274,244 research outputs found

    Panchromatic spectral energy distributions of Herschel sources

    Get PDF
    (abridged) Far-infrared Herschel photometry from the PEP and HerMES programs is combined with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields. Based on this rich dataset, we reproduce the restframe UV to FIR ten-colors distribution of galaxies using a superposition of multi-variate Gaussian modes. The median SED of each mode is then fitted with a modified version of the MAGPHYS code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an AGN. The defined Gaussian grouping is also used to identify rare sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z~1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eight other popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 micron detected sources in PEP GOODS fields. AGN appear to be distributed in the stellar mass (M*) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the "main sequence". The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the "off-sequence" region of the M*-SFR-z space.Comment: Accepted for publication in A&A. Some figures are presented in low resolution. The new galaxy templates are available for download at the address http://www.mpe.mpg.de/ir/Research/PEP/uvfir_temp

    Infrared Spectral Energy Distributions of Nearby Galaxies

    Full text link
    The Spitzer Infrared Nearby Galaxies Survey (SINGS) is carrying out a comprehensive multi-wavelength survey on a sample of 75 nearby galaxies. The 1-850um spectral energy distributions are presented using broadband imaging data from Spitzer, 2MASS, ISO, IRAS, and SCUBA. The infrared colors derived from the globally-integrated Spitzer data are generally consistent with the previous generation of models that were developed based on global data for normal star-forming galaxies, though significant deviations are observed. Spitzer's excellent sensitivity and resolution also allow a detailed investigation of the infrared spectral energy distributions for various locations within the three large, nearby galaxies NGC3031 (M81), NGC5194 (M51), and NGC7331. Strong correlations exist between the local star formation rate and the infrared colors f_nu(70um)/f_nu(160um) and f_nu(24um)/f_nu(160um), suggesting that the 24 and 70um emission are useful tracers of the local star formation activity level. Preliminary evidence indicates that variations in the 24um emission, and not variations in the emission from polycyclic aromatic hydrocarbons at 8um, drive the variations in the f_nu(8.0um)/f_nu(24um) colors within NGC3031, NGC5194, and NGC7331. If the galaxy-to-galaxy variations in spectral energy distributions seen in our sample are representative of the range present at high redshift then extrapolations of total infrared luminosities and star formation rates from the observed 24um flux will be uncertain at the factor-of-five level (total range). The corresponding uncertainties using the redshifted 8.0um flux (e.g. observed 24um flux for a z=2 source) are factors of 10-20. Considerable caution should be used when interpreting such extrapolated infrared luminosities.Comment: 32 pages including 16 figures; accepted for publication in the Astrophysical Journa

    Spectral Energy Distributions of 6.7 GHz methanol masers

    Full text link
    The 6.7 GHz maser transition of methanol has been found exclusively towards massive star forming regions. A majority of the masers have been found to lack the presence of any associated radio continuum. This could be due to the maser emission originating prior to the formation of an HII region around the central star, or from the central object being too cool to produce a HII region. One way to distinguish between the two scenarios is to determine and model the spectral energy distributions (SEDs) of the masers. We observed a sample of 20 6.7 GHz methanol masers selected from the blind Arecibo survey, from centimeter to submillimeter wavelengths. We combined our observations with existing data from various Galactic plane surveys to determine SEDs from centimeter to near-infrared wavelengths. We find that 70% of the masers do not have any associated radio continuum, with the rest of the sources being associated with hypercompact and ultracompact HII regions. Modeling the SEDs shows them to be consistent with rapidly accreting massive stars, with accretion rates well above 10^{-3} M_sun/yr. The upper limits on the radio continuum are also consistent with any ionized region being confined close to the stellar surface. This confirms the paradigm of 6.7 GHz methanol masers being signposts of early phases of massive star formation, mostly prior to the formation of a hypercompact HII region.Comment: 15 pages, 4 figures; Accepted by A&

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Reconstructing Galaxy Spectral Energy Distributions from Broadband Photometry

    Get PDF
    We present a novel approach to photometric redshifts, one that merges the advantages of both the template fitting and empirical fitting algorithms, without any of their disadvantages. This technique derives a set of templates, describing the spectral energy distributions of galaxies, from a catalog with both multicolor photometry and spectroscopic redshifts. The algorithm is essentially using the shapes of the templates as the fitting parameters. From simulated multicolor data we show that for a small training set of galaxies we can reconstruct robustly the underlying spectral energy distributions even in the presence of substantial errors in the photometric observations. We apply these techniques to the multicolor and spectroscopic observations of the Hubble Deep Field building a set of template spectra that reproduced the observed galaxy colors to better than 10%. Finally we demonstrate that these improved spectral energy distributions lead to a photometric-redshift relation for the Hubble Deep Field that is more accurate than standard template-based approaches.Comment: 23 pages, 8 figures, LaTeX AASTeX, accepted for publication in A

    The Spectral Energy Distributions of Red 2MASS AGN

    Full text link
    We present infrared (IR) to X-ray spectral energy distributions (SEDs) for 44 red AGN selected from the 2MASS survey on the basis of their red J-KS_S color (>2 mag) and later observed by Chandra. In comparison with optically-, radio-, and X-ray selected AGN, their median SEDs are red in the optical and near-IR with little/no blue bump. It thus seems that near-IR color selection isolates the reddest subset of AGN that can be classified optically. The shape of the SEDs is generally consistent with modest absorption by gas (in the X-ray) and dust (in the optical-IR). The levels of obscuration, estimated from X-rays, far-IR and our detailed optical/near-IR color modeling are all consistent implying N_H < few*10^{22} cm^{-2}. We present SED models that show how the AGN optical/near-IR colors change due to differing amounts of reddening, AGN to host galaxy ratio, redshift and scattered light emission and apply them to the sources in the sample. We find that the 2MASS AGN optical color, B-R, and to a lesser extent the near-IR color, J-KS_S, are strongly affected by reddening, host galaxy emission, redshift, and in few, highly polarized objects, also by scattered AGN light. The obscuration/inclination of the AGN allows us to see weaker emission components which are generally swamped by the AGN.Comment: 52 pages, 17 figures, accepted for publication in Ap
    corecore